
1

Hypergraph-Based
Combinatorial Optimization of
Matrix-Vector Multiplication

Preliminary Exam — 4/16/2008

Michael Wolf

2

Color Scheme of Text

• Original contribution

• Future work
– Ongoing research

– Proposed research

3

Combinatorial Optimization of Mat-Vec Multiplication

• Two main subtopics

• Serial matrix-vector multiplication
– Reducing redundant operations

– Dense relatively small matrices

• Parallel matrix-vector multiplication
– Minimization of communication volume

– Large, sparse matrices

4

• Reducing redundant operations in building finite
element (FE) stiffness matrices
– Reuse optimized code when problem is rerun

Based on reference

element, generate code to

optimize construction of

local stiffness matrices

Can use optimized code

for every element in

domain

Motivation:

Optimization of Serial Mat-Vec Multiplication

5

Related Work

• Finite element “Compilers” (FEniCS project)
– www.fenics.org

– FIAT (automates generations of FEs)

– FFC (variational forms -> code for evaluation)

• Following work by Kirby, et al., Texas Tech,
University of Chicago on FErari
– Optimization of FFC generated code to evaluate

finite element matrices

– Equivalent to optimizing matrix-vector product code

6

Matrix-Vector Multiplication

where

Element

dependent
Element

independent

For 2D Laplace equation, we obtain following matrix-
vector product to determine entries in local

stiffness matrix

7

Optimization Problem

Objective: Generate set of operations for
computing matrix-vector product with minimal
number of multiply-add pairs (MAPs)

8

Possible Optimizations - Collinear Rows

0

8

2 22

3 33 0

5 55

2 22 0

9

Possible Optimizations - Colinear Rows

0

8

2 22

3 33 0

5 55

2 22 0

1 MAP

10

Possible Optimizations - Identical Rows

0

8

2 22

3 33 0

5 55

2 22 0

0 MAPs

Special case when

rows identical

11

Possible Optimizations - Partial Colinear Rows

0

8

2 22

3 33 0

5 55

2 22 0

12

Possible Optimizations - Partial Collinear Rows

0

8

2 22

3 33 0

5 55

2 22 0

2 MAPs

13

Graph Model - Resulting Vector Entry Vertices

• Entries in resulting vector represented by
vertices in graph model

14

Graph Model - Inner-Product Vertex and Edges

• Additional inner-product (IP) vertex

• Edges connect IP vertex to every other
vertex, representing inner-product operation

15

Graph Model - Row Relationship Edges

• Operations resulting from relationships
between rows represented by edges between
corresponding vertices

16

Graph Model - Edge Weights

• Edge weights are MAP costs for operations

17

Graph Model Solution

• Solution is minimum spanning tree (MST)
– Minimum subgraph

– Connected and spans vertices

– Acyclic

MST(5)GraphMatrix

18

Graph Model Solution

• Prim’s algorithm to find MST (polynomial time)
• MST traversal yields operations to optimally

compute (for these relationships) matrix-vector
product

InstructionsMST TraversalMatrix

19

Graph Model Results - 2D Laplace Equation

• Graph model shows significant improvement over
unoptimized algorithm

60% decrease

20

Graph Model Results - 2D Laplace Equation

• Improved graph model shows significant
improvement over FErari

21% decrease

21

Graph Model Results - 3D Laplace Equation

• Again graph model requires significantly fewer
MAPs than unoptimized algorithm

59% decrease

22

Graph Model Results - 3D Laplace Equation

• Again graph model requires significantly fewer
MAPs than FErari

22% decrease

23

Limitation of Graph Model

1

0

1 32
4 44 4

2 02
0 20 2

• Edges connect 2 vertices
• Can represent only binary row relationships
• Cannot exploit linear dependency of more than

two rows
• Thus, hypergraphs needed

24

Hypergraph Model

• Same edges (2-vertex hyperedges) as graph model
• Additional higher cardinality hyperedges for more

complicated relationships
– Limiting to 3-vertex linear dependency hyperedges

for this talk

25

Hypergraph Model

• Extended Prim’s algorithm to include hyperedges
• Polynomial time algorithm
• Solution not necessarily a tree

– {IP,1,3,5}
– {IP,2,4,5}

• No guarantee of optimum solution

26

Hypergraph Model Results - 2D Laplace Equation

• Hypergraph solution slightly better for some
orders but not significantly better

• Graph algorithm solution close to optimal?
– 3 Columns

– Binary relationships may be good enough

27

Hypergraph Model Results - 3D Laplace Equation

• Hypergraph solution significantly better than
graph solution for many orders

19% additional

decrease

28

Future Work: New Hypergraph Method(s)

• Greedy modified Prim’s algorithm yields
suboptimal solutions for hypergraphs

• Want improved method that yields better

(or optimal) solutions
–Improved solution

–Optimality of greedy solution

• First approach: integer programming method
–Express valid hypergraph solution more formally

–Exponential number of variables/constraints
discouraging

• New approach: formulate as vertex ordering

29

Future Work: Vertex Ordering Method

• Order vertices
–Roughly represents order of calculation for entries

• For given ordering, can determine optimal
solution subhypergraph!
–Greedy algorithm of selecting cheapest available
hyperedge

–Fast

• Ordering is challenging part
–Traversal of greedy solution good starting point

–Local refinement on starting point

• Develop global ordering method

30

Future Work: Hyperedge Detection/Construction

• Hyperedge detection/construction is bottleneck

• Currently brute force operation (nested loops)
–e.g. O(n3) calls to coplanar detection kernel for n rows

• Detection kernel: originally SVD, now hybrid

• Improvement over brute force method
–Better complexity than O(n3)

31

Future Work: Hyperedge Pruning

• Hyperedge explosion
– Over 10 million hyperedges for FE matrices

– Hypergraphs too large to fit on one processor

• Most hyperedges won’t be in optimal solution

• Want to prune as many as possible

• For example, currently prune
– Hyperedge if weight greater or equal than number

of nonzeros for all involved vertices

– Coplanar (3 V) hyperedge if two of rows are
collinear

• Need additional pruning heuristics
– One possibility: use graph solution

32

Future Work: Miscellaneous

• Runtime of resulting operations
– Preliminary studies show slight improvement

– Not as good as MAP improvement

– More complete study necessary

• Better instruction ordering
– Currently do naive traversal of solution subgraph

– Can do something more clever/cache-friendly

– Solution is dependency graph

33

Sparse Matrix Partitioning

• Work with Dr. Erik Boman (SNL)
- CSCAPES Institute

• Researched and developed two new
two-dimensional methods

• If successful, will be implemented as part of
new matrix partitioning suite in Zoltan

34

Parallel Sparse Matrix-Vector Multiplication

• Partition matrix nonzeros
• Partition vectors

35

Objective

• Ideally we minimize total run-time
• Settle for easier objective

– Work balanced
– Minimize total communication volume

• Can partition matrices in different ways
– 1-D
– 2-D

• Can model problem in different ways
– Graph
– Bipartite graph
– Hypergraph

36

1-D Partitioning

• Each process
assigned nonzeros
for set of columns

1-D Column

• Each process
assigned nonzeros
for set of rows

1-D Row

37

When 1-D Partitioning is Inadequate

n=12

nnz=34 (18,16)

volume = 9

“Arrowhead” matrix

• For any 1-D bisection of nxn arrowhead matrix:
– nnz = 3n-2
– Volume (3/4)n

• O(k) volume partitioning possible

38

2-D Partitioning

• More flexibility in partitioning

• No particular part for given row or column

• More general sets of nonzeros assigned parts

• Fine-grain hypergraph model
– Ultimate flexibility
– Assign each nz separately

• Corner symmetric partitioning method
• Graph model for symmetric 2-D partitioning
• Nested dissection symmetric partitioning method

39

Fine-Grain Hypergraph Model

•Catalyurek and
Aykanat (2001)

•Nonzeros represented
by vertices in
hypergraph

40

Fine-Grain Hypergraph Model

•Rows represented by
hyperedges

41

Fine-Grain Hypergraph Model

•Columns
represented by
hyperedges

42

Fine-Grain Hypergraph Model

•2n hyperedges

43

Fine-Grain Hypergraph Model

• Partition vertices
into k equal sets

• For k=2
– Volume = number of

hyperedges cut

• Minimum volume
partitioning when
optimally solved

• Larger NP-hard
problem than 1-Dk=2, volume = cut = 2

44

New 2-D Method: “Corner” Symmetric Partitioning

• Optimal partitioning of arrowhead
matrix suggests new partitioning method

45

“Corner” Symmetric Partitioning

• 1-D parts reflected across diagonal

46

“Corner” Symmetric Partitioning

• Take lower triangular portion of
matrix

47

“Corner” Symmetric Partitioning

• 1-D (column) hypergraph partitioning
of lower triangular matrix

48

“Corner” Symmetric Partitioning

• Reflect partitioning symmetrically
across diagonal

49

“Corner” Symmetric Partitioning

• Optimal partitioning

Volume = 2

50

Comparison of Methods -- Arrowhead Matrix

*optimal

2(k-1)Order n

• n = 40,000
• nnz = 119,998
• Communication volume for 3 methods

51

Preliminary Results

• Symmetric matrices

• First 3 from Professor Rob Bisseling’s
(Utrecht University) Mondriaan paper

• Last from Sandia Xyce circuit simulation

• Hypergraph partitioning for all methods
– Zoltan with PaToH

52

Preliminary Results: Communication Volume

53

Future Work: Reordering

• Ordering not advantageous in 1D methods
– Same graphs/hypergraph models

• Corner method partitioning quality depends
greatly on ordering

–Ordering impacts off-diagonal nz partitioning

• Symmetric reordering to further reduce
communication

• Focus on bisection
–Recursive bisection for k>2

54

Reordering (Bisection)

• Graph model G(V,E)
– Vector entries represented by vertices

– Off-diagonal nonzeros represented by edges

– Each vertex assigned part and

 position

• “costs” 2 words of communication iff

• “free” otherwise

55

Reordering (Bisection)

• “costs” 2 words if

vol=2 vol=4

56

Reordering (Bisection)

• Ideally find optimal partitioning/ordering
– Very difficult combinatorial problem

• Instead we propose
– Fix ordering, partition

• Corner method

– Fix vertex partitioning, find optimal ordering

• Can iterate two steps

• Need to find optimal vertex ordering given
fixed vertex partitioning

–Divide graph into 3 categories of vertices

57

Reordering (Bisection): Vertex Categories

• Interior vertices: not adjacent to any
vertex owned by different part

58

Reordering (Bisection): Vertex Categories

• Boundary vertices: adjacent to at least one
vertex owned by different part

59

Reordering (Bisection): Vertex Categories

• Bipartite graph obtained by
– Removing interior vertices

– Removing non-cut edges

60

Reordering (Bisection): Vertex Categories

• Minimum vertex cover of bipartite graph
– Cover boundary vertices

61

Reordering (Bisection): Vertex Categories

• Non-cover boundary vertices

62

Reordering (Bisection): Vertex Categories

• 3 Categories
– Interior vertices

– Non-cover boundary vertices

– Cover boundary vertices

63

Reordering (Bisection): Ordering Interior V

• Interior vertices can be given any position
with no affect on volume

– Since adjacent vertices have same part

– Position these first

• “costs” if

64

Reordering (Bisection): Ordering Other V

• Find ordering of remaining V such that
– Minimum set of vertices result in communication

– Equivalently, minimum set of vertices such that
for each edge in bipartite graph, vertex with
larger numbered position is contained in this set

– Minimum vertex cover gives us this set
• With cover vertices ordered last

• Order cover boundary vertices last

• “costs” if

65

Reordering (Bisection): Resulting Matrix

• Only cover boundary vertices “cost”

66

Graph Model for Symmetric 2-D Partitioning

• Given symmetric matrix A

• Symmetric partition
– a(i,j) and a(j,i) assigned same partition

– Input and output vectors have same distribution

• Corresponding graph G(V,E)
– Vertices correspond to vector elements

– Edges correspond to off-diagonal nonzeros

67

Graph Model for Symmetric 2-D Partitioning

• Corresponding graph G(V,E)
– Vertices correspond to vector elements

– Edges correspond to off-diagonal nonzeros

68

Graph Model for Symmetric 2-D Partitioning

• Symmetric 2-D partitioning
– Partition both V and E

– Gives partitioning of both matrix and vectors

69

Communication in Graph Model

• Communication is assigned to vertices

• Vertex incurs communication iff incident
edge is in different part

• Want small vertex separator -- S={V8}

70

Nested Dissection Partitioning Method - Bisection

• Suppose A is symmetric
• Let G(V,E) be graph of A
• Find small, balanced separator S

– Yields vertex partitioning V = (V0,V1,S)

• Partition the edges
– E0 = {edges that touch a vertex in V0}
– E1 = {edges that touch a vertex in V1}

71

Nested Dissection Partitioning Method - Bisection

• Vertices in S and corresponding edges
– Can be assigned to either partition
– Can use flexibility to maintain balance

• Communication Volume = 2*|S|
– Regardless of S partitioning
– |S| in each phase

72

Nested Dissection Partitioning Method

• Recursive bisection to
partition into >2
partitions

• Use nested dissection!

73

Preliminary Numerical Experiments

• Compared 3 methods
– 1-D hypergraph partitioning

– Fine-grain hypergraph partitioning

– Nested dissection partitioning

• Hypergraph partitioning for all methods
– Zoltan with PaToH

• Symmetric and nonsymmetric matrices
– Mostly from Prof. Rob Bisseling (Utrecht Univ.)

• k = 4, 16, 64 partitions

74

Communication Volume - Symmetric Matrices

finan512

bcsstk30

w
o
rd

s

cage10

w
o
rd

s

bcsstk32

w
o
rd

s

w
o
rd

s

75

Runtimes

cage10

bcsstk32

se
co

n
d
s

finan512

se
co

n
d
s

se
co

n
d
s

bcsstk30

se
co

n
d
s

76

Nonsymmetric Matrices

• Given nonsymmetric matrix A

• Construct bipartite graph G’(R,C,E)
– R vertices correspond to rows, C vertices to columns

– E correspond to nonzeros

– Can be represented by symmetric adjacency matrix

• Apply nested dissection approach to G’
– Use same algorithm as for symmetric case

Bipartite graph

77

Communication Volume - Nonsymmetric Matrices

cre_b

w
o
rd

s

tbdlinux

w
o
rd

s

lhr34

w
o
rd

s

memplus

w
o
rd

s

Rectangular

Square

78

Messages Sent (or Received) per Process

cage10

bcsstk32

m
es

sa
g
es

finan512

m
es

sa
g
es

m
es

sa
g
es

bcsstk30

m
es

sa
g
es

79

Summary of Nested Dissection Method Results

• New nested dissection 2-D algorithm
– Implemented using existing algorithms and software
– Quality better than 1-D, and similar to fine-grain

hypergraph method for many matrices
– Faster to compute than fine-grain hypergraph
– Fewer messages than fine-grain hypergraph

80

Progress: Serial Matrix-Vector Multiplication (1)

Approximate % complete

• Improved hypergraph algorithm
– Develop vertex ordering algorithm

81

Progress: Serial Matrix-Vector Multiplication (2)

Approximate % complete

• Hyperedge pruning
– Develop one or two more heuristics

– One based on MST graph solution

82

Progress: Serial Matrix-Vector Multiplication (2)

Approximate % complete

• Hyperedge detection
– Need to improve O(n3) looping (for coplanar)

• Operation ordering
– More cache friendly ordering

83

Progress: Sparse Matrix Partitioning (1)

Approximate % complete

• Corner reordering
– Implement proposed method

• Nested dissection approach
– Improve partitioning of separator vertices/edges

84

Progress: Sparse Matrix Partitioning (2)

Approximate % complete

• Nonsymmetric matrices
– Corner method

– Improve nested dissection approach to nonsymmetric

85

Progress: Sparse Matrix Partitioning (2)

Approximate % complete

• Other communication metrics
– Messages

• Numerical experiments
– Larger matrices

86

Acknowledgements/Thanks

• Professor Michael Heath,
– Advisor

• Dr. Erik Boman, Sandia National Laboratories
– Summer technical advisor
– Collaborator on partitioning work
– Suggested serial matrix-vector optimization problem,

hypergraphs, etc.
• Dr. Bruce Hendrickson, Sandia

– Corner method ordering
– Suggested vertex-ordering for serial opt. problem

• Professor Robert Kirby, Texas Tech University
– Serial matrix-vector optimization/FErari discussions

87

Acknowledgements/Thanks

• Professor Luke Olson
– Help with FE code to generate matrices

• Professor Jeff Erickson
– Discussion about serial optimization problem

• Suggested vertex-ordering
• Hyperedge detection

• Professor William Gropp
– Discussion about serial optimization problem

• Funding sources
– DOE CSGF (Krell Institute)
– CSCAPES
– Professor Heath’s Fulton Watson Copp Chair

